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Digital safety relies on cryptography

STRICTLY CONFIDENTIAL

Cloud

Servers

Payment 

Traffic

Devices

Network

Transport

Surveillance

Confidentiality AuthenticityIntegrity

STRONG CRYPTOGRAPHY IS CORE OF SECURITY 
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What if foundation becomes in-secure ?
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Impact of weak crypto is material

Risk

Financial Loss
Risk

Public Safety
Risk

Data Loss 
Impact

Compliance

IMPACT OF WEAK CRYPTOGRAHY

CRYPTO VULNERABILITY | SHALL IMMEDIATELY BE FIXED
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Cryptographic failures
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Malware Flame
MD5 Certificates

▪ Discovered 2012, attacks Windows

▪ Components of Flame were signed with a fraudulent certificate, made it 

appear to have originated from Microsoft

▪ Specific Microsoft certificate still used MD5 as hash function

▪ Malware authors produced a counterfeit copy of the certificate

▪ Rogue certificates demonstrated in 2008 by Sotirov et.al.

▪ MD5 is a cryptographic hash function published in 1992 and broken in 

2004
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DUAL_EC_DRBG
RNG with backdoor

▪ Algorithm that was presented as a cryptographically secure 

pseudorandom number generator

▪ Standardized by ANSI, NIST and ISO

▪ RSA made Dual_EC_DRBG the default CSPRNG in BSAFE

▪ Juniper were using it in their VPN products

▪ Contains a backdoor
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SHATTERED
SHA-1 collisions

▪ SHA-1 is a cryptographic hash function

▪ SHA-1 theoretically broken in 2005

▪ Since 2005 constant progress towards a practical attack

▪ Officially deprecated by NIST in 2011

▪ SHA-1 is used everywhere

▪ Digital Certificate signatures

▪ Email PGP/GPG signatures

▪ Software signatures

▪ Backup systems

▪ etc...

https://shattered.io

https://shattered.io/
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WEP
Weak crypto

▪ WEP introduced in 1997 in 802.11 wireless standard

▪ Uses weak stream cipher (RC4) and short IVs

▪ First attacks in 2001 by various researchers

▪ Since then constant improvements have been published

▪ WEP was blamed for the theft of 45 million credit card numbers in 2007

https://arstechnica.com/information-technology/2007/05/blame-

for-record-breaking-credit-card-data-theft-laid-at-the-feet-of-wep/

https://arstechnica.com/information-technology/2007/05/blame-for-record-breaking-credit-card-data-theft-laid-at-the-feet-of-wep/
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Lucky 13
Padding oracle attack on TLS

▪ Attack on TLS up to version 1.2 published in 2013

▪ Attacks apply to CBC-mode in all TLS and DTLS implementations

▪ Issue with the order MAC-Encode-Encrypt, padding not included in MAC

▪ Man-in-the-middle attacker who sees only ciphertext and can inject 

ciphertexts of his own composition into the network

▪ Allows plaintext recovery in certain circumstances

http://www.isg.rhul.ac.uk/tls/Lucky13.html

http://www.isg.rhul.ac.uk/tls/Lucky13.html
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Keeloq
Proprietary block cipher

▪ Is/was used in many remote keyless entry systems for cars

▪ Details of the algorithm were leaked in 2006

▪ Researchers broke the system in 2007
▪ Recover 64-bit Keeloq key using only 216 known plaintexts and 244.5

encryptions 

▪ In 2008 independent researchers show improved results
▪ Their attack works on all known car and building access control systems 

that rely on the Keeloq cipher

▪ Recovers the secret master keys embedded in both the receiver and 

the remote control using side-channel attacks

https://www.cosic.esat.kuleuven.be/keeloq/

http://www.emsec.rub.de/keeloq

https://www.cosic.esat.kuleuven.be/keeloq/
http://www.emsec.rub.de/keeloq
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ROCA
Vulnerable RSA generation

▪ Faulty generation of RSA keys used in cryptographic smartcards, security 

tokens and other secure hardware chips manufactured by Infineon 

Technologies AG

▪ Code complies with two security certification standards, NIST FIPS 140-2 

and CC EAL5+,

▪ Allows for a practical factorization attack: remote attacker can compute 

an RSA private key from the public key

https://crocs.fi.muni.cz/public/papers/rsa_ccs17

https://crocs.fi.muni.cz/public/papers/rsa_ccs17


13

ROCA
Vulnerable RSA generation

▪ Estonia announced that 750.000 

government identify cards, issued since 

October 2014, might be effected

▪ Vulnerable keys in TLS certificates 

discovered

▪ PGP keys used for email encryption 

effected

▪ Keys on GitHub submissions

▪ Etc…

https://crocs.fi.muni.cz/public/papers/rsa_ccs17

https://crocs.fi.muni.cz/public/papers/rsa_ccs17
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How does crypto evolve?



15

Constant progress in cryptography
1970-1999

1974: Development 
of Feistel network 

1976: DES published as 
FIPS standard

1985: Miller and Koblitz
discover elliptic curve 
cryptography

1990: MD4 hash 
function published

1977: Invention of RSA

1978: Invention of the 
McEliece cryptosystem

1980

1989: MD2 hash function 
published

1990 20001970

1989: A5/2 developed as 
weakened variant of A5/1

1991: Phil Zimmermann 
releases PGP

1991: RSA-100 factored

1992: Rivest publishes 
the MD5 hash function

1992: SHA-0 standardized 
(FIPS 180)

1993: DSA standardized 
(FIPS 186)

1994: SSL protocol 
released

1994: DES theoretically 
broken

1994: SHA-1 standardized 
(FIPS 180-1)

1995: First full-round 
collision attack on MD4

1996: Collision on MD5 
compression function

1997: NIST launches 
AES competition

1998: Triple-DES 
published

1998: DES practically broken

1999: A5/2 broken 

1999: RSA-155 factored

1987: A5/1 cipher for GSM 
encryption

1999: A5/3 released for 
GSM and GPRS
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Constant progress in cryptography
2000-2017

2000: RSA released 
into public domain

2000 2010 2017

2000: ECDSA standardized 
(FIPS 186-2)

2000: Real-time 
cryptanalysis of A5/1

2001: AES standardized 
(FIPS 197)

2001: SHA-2 standardized 
(FIPS 180-2)

2003: CCM mode 
published

2003: RSA-576 factored

2004: Collision on full MD5

2005: Practical collision for 
MD5 in X.509 certificate

2005: Theoretical attacks 
on SHA-1

2005: Boomerang 
attack on A5/3

2005: RSA-640 factored

2006: DES broken in 9 days

2007: SHA-3 competition 
announced

2007: NIST includes GCM 
and CCM in SP 800-38D

2009: RSA-768 factored

2010: Practical related-
key attack on A5/3

2011: SIDH published

2011: NIST deprecates SHA-1

2012: PRESENT and CLEFIA lightweight 
block ciphers standardized 

2012: SHA-512/224 and SHA-
512/256 standardized (FIPS 180-4)

2013: Dual_EC_DRBG discovered 
to have backdoor

2015: SHA-3 standardized 
(FIPS 202)

2016: NIST announces PQC 
competition

2017: DES broken in 25 
seconds

2017: Practical collision 
attack on SHA-1

2005: GCM mode 
published
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Constant progress in cryptography
2017-20??

????

Post-Quantum

Cryptography

Standards

Lightweight

Cryptography

Standards

IoT

Standards and 

Regulations

RSA and DSA

broken?

SHA-2 broken?

Functional

Encryption

Homomorphic

Encryption

Multi-Party

Computation

Forged SHA-1

Certificates?
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How diverse is crypto?
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Post-Quantum
Cryptography

Hash-Based 

Isogeny-Based 

Lattice-Based  

Multivariate-Based

Code-Based 

Traditional
cryptography

ECC

RSA

AES

Serpent

…

Lightweight
cryptography

PRESENT

PHOTON

CLEFIA

SPONGENT

…

National
cryptography

GER ECGDSA

RU GOST

KOR KCDSA

USA Suite A

…

Many options
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Why do we care?
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Need for Agility

Compliance Longevity of IoT

Cryptographic Threats Future Cryptography

• National crypto requires that hardware 

vendors comply to local algorithms and 

standards

• Supply Chains are managed globally, 

management of critical systems reside          

in one country and deployed globally

• Crypto agility required to comply with 

country standards

• IoT devices in operation for 10+ years

• Often without possibility to update critical 

components

• Crypto agility required to adapt to new 

threats and new standards during the 

whole life cycle

• Vulnerable implementations

• Outdated algorithms

• New attacks on existing algorithms

• Crypto agility required to quickly react 

on these threats

• Post Quantum Cryptography

• New algorithm and standards

• New use cases

• Crypto agility required to be prepared 

when standards are announced
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What is the solution?
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We need crypto agility
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Cryptographic Agility
Definition

Cryptographic agility is the ability of a system to easily 

adopt alternatives to the cryptographic primitives it was 

originally designed to use. 
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Decouple applications from cryptography

Agile

Cryptography

Operating

System

Application

Cryptographic Agility
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Agile Crypto Library
Abstract, Dynamic and Manageable

Abstract API
Hide crypto complexity to developers

Deploy New Algorithm

Without modifying application code 

Dynamically Loadable

Change crypto during runtime

Select Implementation Type
Depending on use case

Let experts decide which crypto to use
Make it manageable by others

Make it run on everything
Support as many platforms as possible

SOFTWARE HARDWARE



27

How could it look like?
Portability

GenerateKey() {

provider = LoadProvider(“path to implementation”);

error    = GenerateSymKey(provider, key);

if(error)…;

return key;

}

Encrypt(data, key) {

provider = LoadProvider(“path to implementation”);

error    = Encrypt(provider, data, key, ciphertext);

if(error)…;

}
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Existing Libraries?
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Many open source libraries
How agile are they?

▪ OpenSSL

▪ BouncyCastle/Java Cryptographic Architecture

▪ libsodium

▪ Crypto++

▪ wolfSSL

▪ libgcrypt

▪ Network Security Services

▪ …
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OpenSSL
EVP interface

▪ EVP functions provide a high level interface to OpenSSL cryptographic 

functions

▪ Support for an extensive range of algorithms

▪ Encryption/Decryption

▪ Sign/Verify

▪ Key derivation

▪ Secure Hash functions

▪ Message Authentication Codes

▪ Support for external crypto engines

https://wiki.openssl.org/index.php/EVP

https://wiki.openssl.org/index.php/EVP
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OpenSSL
EVP symmetric encryption and decryption

https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption

EVP_CIPHER_CTX *ctx;
int len;
int ciphertext_len;

if(!(ctx = EVP_CIPHER_CTX_new())) handleErrors();

if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
handleErrors();

if(1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))
handleErrors();

ciphertext_len = len;

if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len)) handleErrors();
ciphertext_len += len;

EVP_CIPHER_CTX_free(ctx);

https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption
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OpenSSL
Engine interface

▪ Exposes an Engine API, which makes it possible to plug in alternative 

implementations of some or all of the cryptographic operations 

implemented by OpenSSL 

▪ Usually used for cryptographic acceleration using a hardware device

▪ Engines can dynamically be loaded at runtime

▪ Example: PKCS11 engine

▪ Can only replace already existing algorithms

▪ Inherits limitations from EVP interface
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OpenSSL
How agile is it?

Implementation independence no

Implementation simplicity* mediocre

Implementation abstraction mediocre

Dynamic exchangeability and 

extensibility

no

Manageability no

Portability good

Performance good

*depends on personal preference and experience
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Java Cryptography Architecture
Abstraction in Java

▪ Framework for cryptography in Java

▪ Provider-based architecture

▪ Abstract APIs for cryptographic operations

▪ Abstract data structures for cryptographic objects

▪ Separates the interfaces and generic classes from their implementations
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Java Cryptography Extension
Abstraction in Java

▪ Part of JCA

▪ Provides encryption, key generation, key agreement and MAC

▪ In the past JCA and JCE used to be treated differently by US export 

policies

▪ Restrictions

▪ Oracle JDK requires each provider to be signed by Oracle

▪ OpenJDK does not

▪ Keys > 128 bits require Unlimited Strength Jurisdiction Policy Files 

(default since 8u161)
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Providers
Abstraction in Java

▪ Providers implement the API defined in JCA and JCE, and they are 

responsible for providing the actual cryptographic algorithm

▪ Popular providers: BouncyCastle, IAIK-JCE

▪ Can be configured through the Java security file

Dynamic

Cipher Link

Providers

BouncyCastle IAIK-JCE …

CRYPTOGRAPHIC API’S

GLOBUS | CRYPTO

Application
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Java Cryptography Architecture
Abstract API

▪ Encryption example:

Security.addProvider(provider_name);

Cipher c = Cipher.getInstance("AES"); 

c.init(ENCRYPT_MODE, key);

byte[] cipherText = c.doFinal(plainText);
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BouncyCastle
Provider

▪ Provider for JCA/JCE

▪ Includes also a low-level API (no restrictions)

PBEKeySpec pbeKeySpec = new PBEKeySpec(password.toCharArray(),
toByte(salt), 50, 256);

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("PBEWithSHA256And256BitAES-CBC-BC");
SecretKeySpec secretKey = new SecretKeySpec(keyFactory.generateSecret(

pbeKeySpec).getEncoded(), "AES");
byte[] key = secretKey.getEncoded();
….

// setup AES cipher in CBC mode with PKCS7 padding
BlockCipherPadding padding = new PKCS7Padding();
BufferedBlockCipher cipher = new PaddedBufferedBlockCipher(

new CBCBlockCipher(new AESEngine()), padding);
cipher.reset();
cipher.init(false, params);
….

len += cipher.doFinal(buf, len);
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JCA/JCE
How agile is it?

Implementation independence good

Implementation simplicity good

Implementation abstraction good

Dynamic exchangeability and 

extensibility

mediocre

Manageability mediocre

Portability mediocre

Performance* no

*compared to what is possible



40

What about PKI?
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Agile Cryptography in PKI
Lack of Agility

▪ Todays PKI systems are not agile

▪ No easy way to switch algorithms in HSMs

▪ No easy way to switch algorithms in software stack

▪ No easy way to switch algorithms in certificates

Certificate 

Authority
HSM



42

Agile Cryptography in PKI
Make it Agile

▪ HSM and Software

▪ Make crypto updateable

▪ Make crypto configurable

▪ Make crypto manageable

▪ Certificates: ?

Certificate 

Authority
HSM
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Agile Cryptography in PKI
Certificates

▪ X.509 does support crypto agility

▪ Replacing hash or signature algorithm = replacing certificate

▪ Replacing certificates costly and time consuming

Certificate 

Authority
HSM
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Summary



45

Summary
Agile Cryptography

▪ Crypto market has to change, we need crypto agility

▪ to be prepared for quantum computers

▪ to cope with the constant progress in cryptography

▪ to comply with local regulations

▪ to be prepared for future standards and challenges 

▪ Many open questions

▪ How can we achieve better data agility?

▪ How can we make IoT crypto agile?

▪ How can we make blockchain crypto agile?

Agile BlockchainAgile IoT Agile Key Management


