

Security in Industry 4.0 Industrial IoT

@TEMET 2018

André Clerc | Security Engineer | TEMET AG Marcel Suter | Director Solutions | libC SA

11.06.2018

- Introduction in Industry 4.0, Industrial IoT (IIoT)
- IT Security versus IIoT Security
- Solution Approaches
- Security and the IIoT
- Secure Key Management

Speaker Information

André Clerc

Dipl. Inf.-Ing. FH , CISSP, CAS Project Management

Expert IT Security Consultant

Works in Information Security since 2000

Core Competencies

PKI incl. Hardware Security Modules Strong Authentication Network and Perimeter Security FATCA, AIA and MiFIR Reporting

Engagements

Founder of About and Beyond PKI Event Author PKI Education @ SwissSign

Speaker Information

Marcel Suter

M.Sc. Computer Science, Dartmouth Economiste d'entreprise, Lausanne

Security SW Engineer & Consultant

Works in Information Security since 1993

Core Competencies

PKI incl. Hardware Security Modules Full life-cycle software/product development Provide customers with best practices in IT Security

Engagements

Chargé de cours à l'Ecole d'Ingénieurs VD

INTRODUCTION IN INDUSTRY 4.0 (IIOT)

Industry 4.0

IIoT – Sensors and Actuators

- Everything is connected
- Use sensors and actuators in an industrial environment
- Typically systems that interact with the physical world where uncontrolled change can lead to hazardous conditions

Sensor to Actuator Flow

@TEMET 2018 - Security in Industry 4.0 (IIoT)

IoT (Sensors) as a Base

@TEMET 2018 - Security in Industry 4.0 (IIoT)

IoT vs. IIoT

IoT vs. IIoT

SECURITY IN IIOT IT/OT

Security of Traditional IT Systems

- Cybersecurity and information assurance in IT systems revolve around three traditional pillars:
 - Confidentiality]
 - Integrity CIA
 - Availability
- Stresses on Core Services
- Less Attention on Peripheral Devices
- Often not in Focus (see IAM):
 - Authentication
 - Authorization
 - Access Control
- Layered Defense and Zoning

IT Security versus IIoT Security

IIoT Ecosystem Security

- The whole ecosystem moves into focus
 - Core Services
 - Peripheral Devices
 - Communication Channels
- To focus traditional (Cyber)-Security pillars is not enough confidentiality, integrity and availability
- Priority order moves: 1) availability, 2) integrity, 3) confidentiality
- To stress on authentication, authorization, access control is mandatory
- Countless attack vectors spread over the production chain
 → one weakness/vulnerability might break down the production or
 result in producing faulty products

IT/OT Convergence

Trustworthiness on Key System Characteristics

Trustworthiness [Schneider1998], [NIST-CPS] is the **degree of confidence** one has that the **system performs as expected** in respect to all the key system characteristics in the face of environmental disruptions, human errors, system faults and attacks. The needs of IT and OT must both be met.

Assurance

specific attacks and weaknesses?

Rist Management

- Security Programm
- Risk Assessment
- Communicate Risks to the Management
- Ongoing Business Attention Updates to Security-related Technologies
- Metrics and Key Performance Indicators
- Managing risk balances the threats against the IIoT system with the security responses that counteract those threats and the risk they represent.

Trust Relationship

Framework

- Security Programm
- Risk Assessment
- Communicate Risks to the Management
- Ongoing Business Attention Updates to Security-related Technologies
- Metrics and Key Performance Indicators
- Managing risk balances the threats against the IIoT system with the security responses that counteract those threats and the risk they represent.

Framework

- Framework
 - International Standards Organization (ISO)
 - Institute of Electrical and Electronic Engineers (IEEE)
 - International Electrotechnical Commission (IEC)
 - Internet Engineering Task Force (IETF)
 - National Institute for Standards and Technology (NIST)

- Industrial Internet of Things Volume G4: Security Framework (Industrial Internet Consortium (IISF) 2016)
- Industrial Internet of Things, Volume G1: Reference Architecture (Industrial Internet Consortium (IIRA) 2016)

SOLUTION APPROACHES

Solution Approach

Controller and Manufacturing Security Enforcement Device (MSED)

Quelle: ISBN 978-3-319-50659-3 Cybersecurity for Industry 4.0Analysis

SECURITY FOCUS IT VERSUS IIOT

SECURITY AND THE IIOT

Different Security Focus

Different Security Focus

PRODUCTIVE + SECURE

Keep costs at the minimum

We will think about it later

Sophism

(argument apparently correct in form but actually invalid)

The market prefers inexpensive software with lots of features at the expense of security and reliability

Different Security Focus

- Traditional security is largely centered around confidentiality
- With IIOT, integrity and availability threats are worse than confidentiality threats

«There is a difference between crashing your computer and loosing your Excel sheet and crashing your pacemaker and loosing your life» (B. Schneier on IOT Security)

SECURITY AND THE IIOT

Sensors and Actuators

AI/SW: the «smarts» which figure out what the data means and what to do about it

which affect our environment

SECURITY AND THE IIOT

Sensors and Actuators

Connecting everything to each other will expose new vulnerabilities and IIOT is actually building a world-size robot

This robot is a combination of

- Decade old computers
- Mobile devices
- Cloud computing
- Databases
- Unpatched cheap devices

This gets dangerous: security was not part of the design

Published IIOT/IOT hacks

IOT Inspector Project Princeton University

Year	Device/Product	Issues
2016 2018	Amazon's Echo speaker	Hide commands in white noise played over loudspeakers and through YouTube videos to get smart devices to turn on airplane mode or open a website. Add something to your shopping list.
2018	BMW with internet connection	Gain control of the CAN buses with the execution of arbitrary, unauthorized diagnostic requests of BMW in-car systems remotely.
2018	Phoenix Industrial Switches	Denial-of-service (DoS), execute arbitrary code, and gain access to potentially sensitive information
2018	GPON routers	Bypass all authentication on the devices
2018	Smart Home Hubs	Brute force attack DES key
2018	Western Digital Cloud	Gain root access to the devices
2018	ZyXEL modems	Access telnet and SSH daemons

11.06.2018

SECURITY AND THE IIOT

(ex: 6LowPAN, IPv4/IPv6, RPL)

(ex: EPC, uCode, IPv6, URIs)

(ex: Wifi, Bluetooth, LPWAN)

IIOT/IOT Stack

1. Infrastructure

2. Identification

4. Discovery

7. Semantic

5. Data Protocols

3. Comms / Transport

6. Device Management

(ex: TR-069, OMA-DM)

8. Multi-layer Frameworks

(ex: JSON-LD, Web Thing Model)

(ex: Alljoyn, IoTivity, Weave, Homekit)

SECURITY AND THE IIOT

Organizations

- ETSI Connecting Things Cluster
- IETF CoRE working group, 6lowpan working group, ROLL working group
- IEEE IoT "Innovation Space"
- OMG Data Distribution Service Portal
- OASIS MQTT Technical Committee
- OGC (Open Geospatial Consortium)
- IoT-A
- OneM2M
- OSIOT
- IoT-GSI (Global Standards Initiative on Internet of Things)
- ISA International Society of Automation
- W3C
- EPC Global
- IEC
- RRG (Routing research group)
- HIPRG (Host identity protocol research group)

Alliances

- Eclipse Paho Project
- OpenWSN
- CASAGRAS
- AllSeen Alliance
- IPSO
- Wi-SUN Alliance
- OMA (Open Mobile Alliance)
- Industrial Internet Consortium

Click here to kill eveyone

(Next Bruce Schneier Book on IIoT - September 2018)

SECURITY AND THE IIOT SOLUTION APPROACHES

Key Management – Primus HSM

- Primus HSM embedded Key Management Service which delivers robust hardware based centralized key management backed up by strong cryptography to protect your business processes.
- Addresses large scale cryptographic key management life-cycle, online hardware-tohardware key distribution, tamper proof audit as well as usage logs for compliance with standards.
- Integrate with the standard Primus HSM backup and replication mechanisms by securing all keys and objects directly in hardware on the HSM partition.
- Reduce operational overhead, increase security: no more licensing, maintenance and support of dedicated systems such as database servers, application and archive servers, monitoring and controls systems.

Solution Approaches

Key Management – Primus HSM

- 1. HW sym/assy. batch production which adresses
 - a. industrial production lots
 - b. HSM to device secure key injection
 - c. Secure key storage. Keys never in the clear
- 2. Geographical dissemination of key material to remote HSM
- 3. Association of produced keys with devices
 - a. Each key can have one or more attributes associated ith a device: lot/serial/date etc
- Each key has a status which can be individually set: produced, associated, revoked etc
- 5. Key management performed via web UI or service interface
- 6. Key production and management is role based

Solution Approaches

References

- <u>https://www.postscapes.com/internet-of-things-protocols</u>
- https://arxiv.org/pdf/1804.04159.pdf
- <u>https://iot-inspector.princeton.edu/</u>
- <u>https://www.schneier.com/blog/archives/2017/02/security_and_th.htm</u>
- <u>https://codecurmudgeon.com/wp/iot-hall-shame</u>

Thank you for your attention

TEMET AG Basteiplatz 5 8001 Zürich +41 44 302 24 42 info@temet.ch www.temet.ch **libC SA** Avenue d'Ouchy 18 1006 Lausanne +41 21 550 1562 info@libc.ch www.libc.ch

