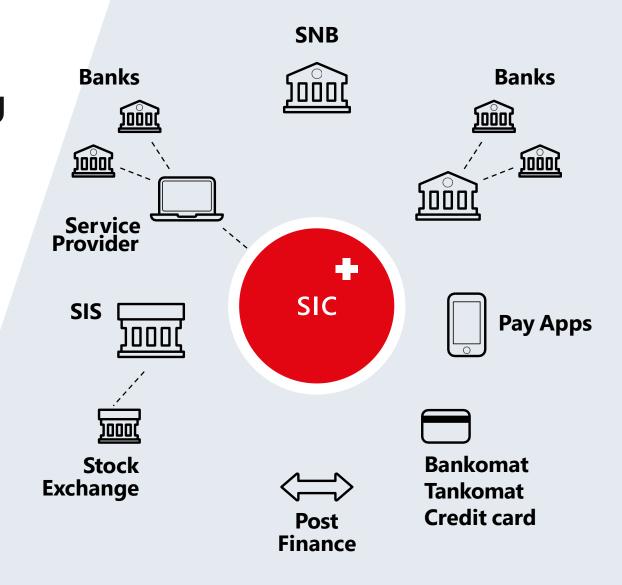
securosys

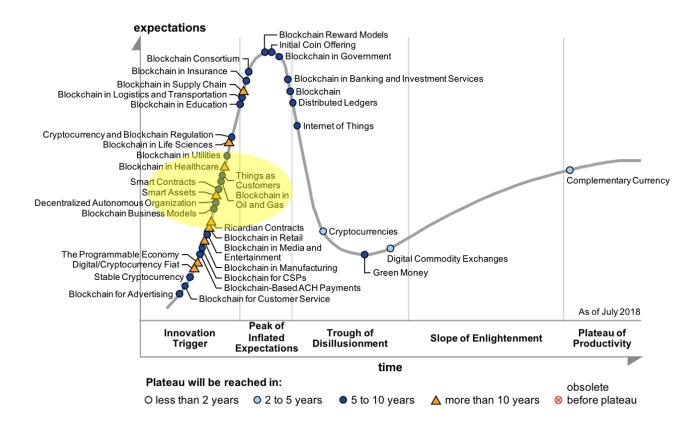
Tokenizing Real-World Assets

April 2019
Marcel Dasen
VP Engineering
Securosys SA

Securosys' products protect the Swiss banking


Traditional HSM

SECUROSYS HSM PROTECT THE SWISS BANKING SYSTEM (SIC AND SECOM)


Over 100 Billion Swiss Francs per day

Up to 700 transactions per second

10 year maintenance & support agreement

Hype Cycle for Blockchain Business, 2018

gartner.com/SmarterWithGartner

© 2018 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. or its affiliates.

Blockchain HSM

SECUROSYS BLOCKCHAIN HSM PROTECT TOKENIZED ASSETS AND PERMISSIONED BLOCKCHAINS

The tokenized asset

- A tokenized asset is a:
 - immutable
 - digital representation
- of a real asset

•••

Transfer ownership: asset Seller: A, Buyer: X

... </transaction>

Digital signatures

Digital assets, smart contracts and crypto currencies

Digital asset

<transaction>

•••

Transfer ownership: asset Source: A,B,C

Dest: X (Y,Z)

...

</transaction>

Digital signatures

Smart contract

<Contract>

If (condition) then execute ...

</contract>

Digital signatures

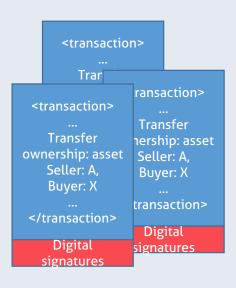
Cryptocurrency

<transaction>

•••

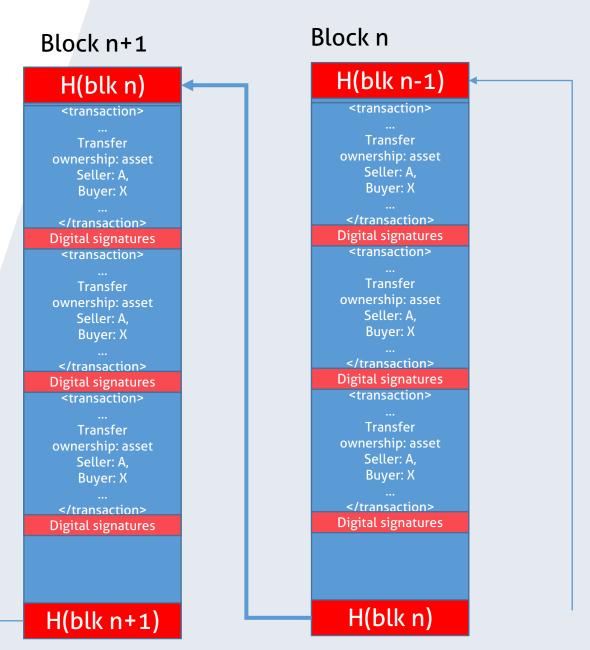
pay amount Source: A Dest: B

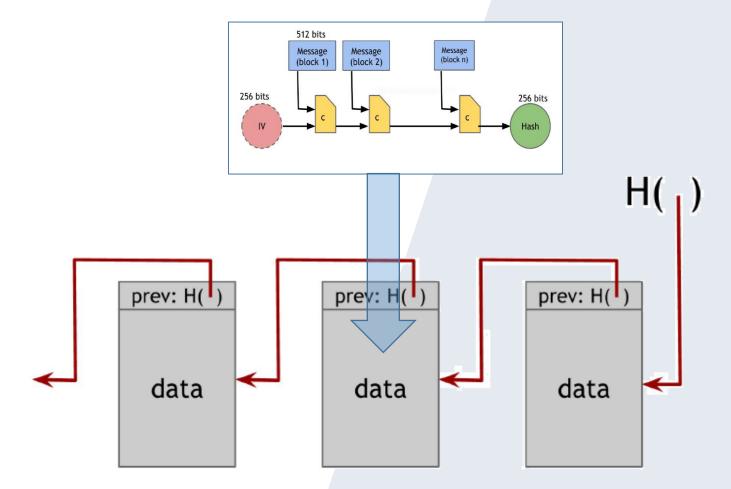
</transaction>


Digital signatures

digital assets

Problem: Copy protection





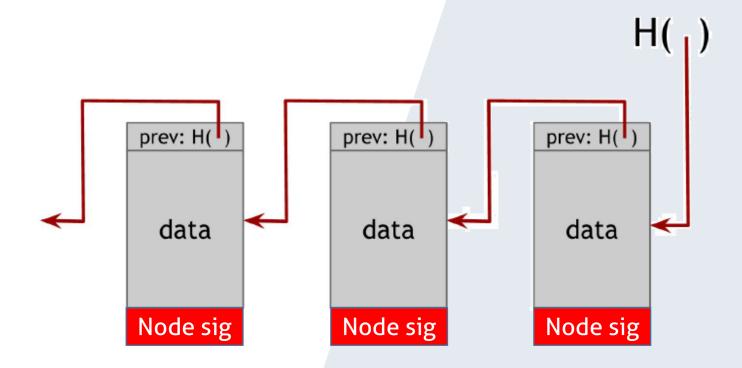
- Store on immutable data structure:
 - => Blockchain

Combine transaction in blocks:

Storage of blocks in a chain

Through chaining of blocks with hash H() the blocks cannot be altered

Problem: blockchains can be copied


- It's a feature not a problem!
 - Everybody can keep his own copy as proof
 - Multiple copies = redundancy = increased fault protection
 - Maintaining can be distributed (DLT)

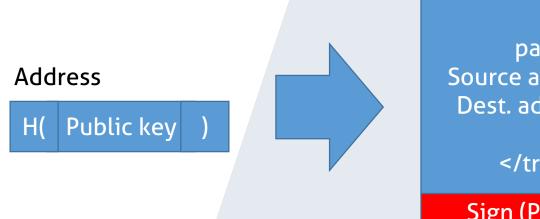
But there is a new problem: If copied chains are amended locally, which amendment is the "right" one?

Distributed ledger technology (DLT)

- Blocks are amended at multiple locations (nodes)
- A consensus algorithm guarantees that only one consensus state prevails
 - Permissioned (a distributed DB like algorithm, typically using a digitally signed state variable) – examples: Hyperledger, Corda, ...
 - Proof of work The first to solve a puzzle example: BTC
 - Proof of stake Proof that you are willing "to pay" example
 - ... various creative ideas ...

Example permissioned block chain

Security of digital assets


- Storage "public" and unalterable on blockchain
- Blockchain can be copied; thus, system is reliable
- Consensus on transaction can be distributed
 - no central trusted authority needed (but possible)
- Transaction validation by digital signing
 - Need for reliable storage of private signature keys

Why tokenizing real world assets

- Easier to process than physical goods
- Easier to transfer ownership
 - Clearing & Settlement
- Transparency: The history is on the blockchain
- No intermediaries or trusted 3rd parties needed for trades
 - but trust in algorithms
 - but trust in proper execution of algorithms (TEE or SEE)

The transaction process

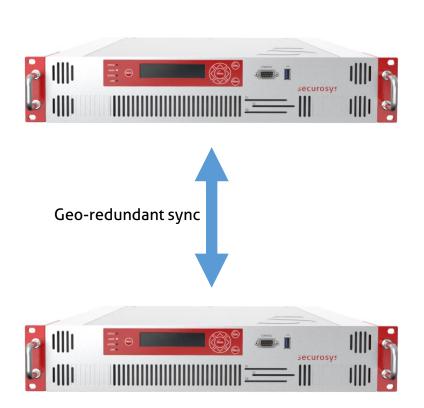
<transaction>
...
pay amount
Source addr: A
Dest. addr: B
</transaction>

Transaction basics: Digital signatures

- Three methods required
 - Key generation method: (sk, pk) := generateKeys(keysize)
 - Sign method: sig := sign(sk , message)
 - Verify method: isValid := verify(pk , message , sig)

- Practical concerns
 - Keep sk secret
 - Use addresses (for PQC concern)

Trust in algorithms: Trusted execution environment


- Asserts the "validated code" is executed
 - Verifies the digital signature of the code
 - Asserts code integrity during execution
- Asserts the "validated transaction" is processed
- Returns a trustable result
 - Digitally signs the result

Tokenization requires a wealth of digital keys

- Billions of asset keys
- Millions of user keys
- Ten thousands of TEE keys
- Thousands of node keys

- Many of which have to be publicly trusted and thus must come from:
 - A trusted party!
 - Have to be stored (highly) secure
 - Have to be managed

Primus HSM for storage of blockchain and asset keys

PQC save addr generation Hash(pub key)

SKA access control on keys

n of m rule sets

Redundancy & Reliability

Algorithms (p256, ed25519, iota iss, ..)

Tamper protection

Secure key generation (TRNG)

"Long"-term storage

Trusted execution platform

Planned

Digital assets revolution

- Digital automation of transfer of ownership for any kind of asset
 - Fractional ownership
 - Tokenization of physical goods
 - Public registries
 - Proof of origin (certificate of origin)
- Security and management of private keys is key for block chain systems
 - Losing a key is losing your asset!
 - Control of access to your keys is control of your assets (vault)
- Putting trust in algorithms requires:
 - Trusted executors
 - Trusted input and output

Your Contact

securosys

Förrlibuckstrasse 70 8005 Zürich Switzerland

info@securosys.ch

www.securosys.ch +41 44 552 31 00