Post-Quantum Cryptography
Quantum Computer

- Ongoing practical research and development paves the way for building large-scale quantum computers.
- Small scale quantum computers already exist.
- In about 10-20 years, large-scale quantum computers could become a reality.
IBM unveils its first commercial quantum computer

January 2019
Gartner Hype Cycle 2018

Hype Cycle for Emerging Technologies, 2018

garter.com/SmarterWithGartner

Source: Gartner (August 2018)
© 2018 Gartner, Inc. and/or its affiliates. All rights reserved.
Global Initiatives (just examples)

- Quantum Flagship
- National Quantum Initiative Act
- Centre For Quantum Computation and Com. Technology
- National Laboratory for Quantum Information Sciences
Companies

- Too many to list…
Capabilities of Quantum Computers

- Quantum computers will be able to perform computations much faster.
- Search algorithms can be performed in square root time (Grover’s algorithm).
- Factorization and discrete logs can be computed in polynomial time (Shor’s algorithm)
How is Cryptography Affected?

Symmetric:
- Generic square root quantum search algorithms apply.
- Need to double the key length.

Public-Key:
- Schemes, whose security is based on integer factorization (RSA), can be broken in quantum polynomial time.
- Schemes, based on DLOG problem, can be broken in quantum polynomial time.
- All of the currently standardized asymmetric cryptography (RSA, ECC) can be efficiently broken by a quantum adversary!
- No ‘easy fix’ as for symmetric cryptography.
How is Cryptography Affected?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Key length</th>
<th>Security Level Conventional Computer</th>
<th>Security Level Quantum Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA-1024</td>
<td>1024 bits</td>
<td>80 bits</td>
<td>0 bits</td>
</tr>
<tr>
<td>RSA-2048</td>
<td>2048 bits</td>
<td>112 bits</td>
<td>0 bits</td>
</tr>
<tr>
<td>ECC-256</td>
<td>256 bits</td>
<td>128 bits</td>
<td>0 bits</td>
</tr>
<tr>
<td>ECC-384</td>
<td>384 bits</td>
<td>256 bits</td>
<td>0 bits</td>
</tr>
<tr>
<td>AES-128</td>
<td>128 bits</td>
<td>128 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td>AES-256</td>
<td>256 bits</td>
<td>256 bits</td>
<td>128 bits</td>
</tr>
</tbody>
</table>
Problem | Quantum Computer Threat # Today

Record Now, Decrypt Later

https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer
Transition Period

- How long does your information need to be secure (x)
- How long to deploy quantum safe solutions (y)
- How long until a large-scale quantum computer (z)

If $x + y > z$ then worry
Prepare for the Quantum Computer

1. Create a Crypto Inventory
 - Know your vulnerabilities

2. Move to a Crypto Agile System
 - Do the effort once
 - Use standard crypto for now

3. Risk Assessment
 - When do I need to worry?

4. Move to PQC
 - Use today's PQC algorithms

5. Move to NIST standards
 - NIST published its standards

N. Monitor Crypto Threats
 - Ready for future crypto challenges
Post-Quantum Cryptography
Quantum Safe Cryptosystems

Code Based Cryptosystems
Security is based on the difficulty of decoding linear codes. It is famous for being the oldest public key encryption scheme that is potentially quantum safe.

Hash Based Cryptosystems
Security is based on hash functions. The most famous schemes are XMSS and SPHINCS.

Lattice Based Cryptosystems
Security is based on the shortest vector problem in a lattice. The most famous schemes include NTRU or cryptosystems based on Learning With Errors (LWE).

Isogeny Based Cryptosystems
Security is based on the problem to find an isogeny between supersingular elliptic curves. The most famous scheme is SIDH.

Multivariate Based Cryptosystems
Security is based on the problem of solving a set of non-linear equations. The most famous scheme is the Hidden Field Equations cryptosystems.
Lattice-Based

- Many lattice-based approaches exist, depending on the underlying hard problem: Closest Vector Problem (CVP), Learning With Errors (LWE), Ring-LWE (RLWE) and others
- Used for signatures, encryption, KEM
Code-Based

- Based on error-correcting codes
- The hard problem is based on hardness of decoding general linear code (NP-hard)
- Used for signatures, encryption, KEMs
Isogeny-Based

- Supersingular elliptic curve isogeny cryptography
- Extension of elliptic curve cryptography
- Hard problem is based on the difficulty of computing the isogeny between curves

- Used for key encapsulation
Hash-Based

- One-time and few-time signatures form the building blocks
- Use a tree structure
- Security only depends on the security of the underlying hash function
- Used for signatures
Multivariate-Based

- Based on multivariate polynomials over a finite field F
- Uses affine transformations and affine endomorphisms
- Hard problem is solving the system of multivariate polynomial equations
- Used for signatures
NIST Competition

- Submission deadline: Nov 30, 2017
- 69 round 1 candidates
- April 2018: first NIST PQC Workshop
- Second round began January 2019
- August 2019: second NIST PQC Workshop
- 2020/2021 - Select algorithms or start a 3rd Round
- 2022-2024 - Draft standards available

- Note: Standard organizations such as ETSI, IETF, ISO, and X9 are all working on recommendations.
NIST Competition

Submissions

<table>
<thead>
<tr>
<th>Category</th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>5</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Code-based</td>
<td>2</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Multivariate</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Symmetric/Hash-based</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>45</td>
<td>64</td>
</tr>
</tbody>
</table>
NIST Competition

- Round 2

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Code-based</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Multivariate</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Symmetric/Hash-based</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>17</td>
<td>26</td>
</tr>
</tbody>
</table>

Benchmarks

- https://bench.cr.yp.to/supercop.html
- https://www.safecrypto.eu/pqclounge/
Signature Algorithm

- CPU cycles and bytes

<table>
<thead>
<tr>
<th>Category</th>
<th>Scheme</th>
<th>Key generation</th>
<th>Sign</th>
<th>Verify</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash-based</td>
<td>Sphincs++-SHA256-128f</td>
<td>7'170'350</td>
<td>238'582</td>
<td>9'951'241</td>
<td>16'976</td>
</tr>
<tr>
<td>Lattice</td>
<td>Dilithium</td>
<td>227'254</td>
<td>910'911</td>
<td>291'116</td>
<td>2'044</td>
</tr>
<tr>
<td>Multivariate</td>
<td>MQDSS-48</td>
<td>2'579'234</td>
<td>252'403'091</td>
<td>185'066'255</td>
<td>32'886</td>
</tr>
<tr>
<td>Code</td>
<td>pqsigRM412</td>
<td>18'062'152'610</td>
<td>33'057'982'128</td>
<td>301'873'276</td>
<td>528</td>
</tr>
</tbody>
</table>
Key Encapsulation Mechanism

- CPU cycles

<table>
<thead>
<tr>
<th>Category</th>
<th>Scheme</th>
<th>Key generation</th>
<th>Encapsulation</th>
<th>Decapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isogeny ECC</td>
<td>SIKEp503</td>
<td>82'329'570</td>
<td>133'880'410</td>
<td>142'428'861</td>
</tr>
<tr>
<td>Lattice</td>
<td>NewHope512-CCA</td>
<td>513'054</td>
<td>776'525</td>
<td>874'199</td>
</tr>
<tr>
<td>Multivariate</td>
<td>DME-(3,2,48)</td>
<td>445'585'460</td>
<td>2'114'390</td>
<td>10'845'706</td>
</tr>
<tr>
<td>Code</td>
<td>Classic McEliece 6960119</td>
<td>2'406'818'088</td>
<td>1'756'816</td>
<td>498'750'958</td>
</tr>
</tbody>
</table>
PQC and PKI
PKI

- Quantum computing strikes at the heart of the security of the global public key infrastructure
- All certificates become obsolete
- Root CAs operate for 20+ years
- Transition to new cryptosystem takes 10+ years (see SHA-1)
Multiple Public-Key Algorithm X.509 Certificates

- X.509 Extensions
- Adds a PQC algorithm and signature to the certificate

```
[ ... omitted for brevity ... ]
X509v3 extensions:
  X509v3 Basic Constraints:
    CA:FALSE
  Netscape Cert Type:
    SSL Server
  Netscape Comment:
    OpenSSL Generated Server Certificate
[ ... omitted for brevity ... ]
Alt-Signature-Algorithm:
  sha512WithHSS

Subject-Alt-Public-Key-Info:
  Leighton-Micali Hierarchical Signature System
  Public Key:
    00:00:00:01:00:00:00:00:00:00:00:00:00:03:1c:ba:ef:
    [ ... omitted for brevity ... ]
  Winternitz Value: 3 (0x3)
  Tree Height: 7 (0x7)

Alt-Signature-Value:
  Signature:
    30:82:0a:74:[ ... omitted for brevity ... ]

Signature Algorithm: ecdsa-with-SHA256
  30:45:02:21: [ ... omitted for brevity ... ]
```

https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/
Conclusion

- Quantum Computer risk is real
- Do your risk assessment
- Move towards crypto agile systems
- Be ready in case QC becomes real